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Nonlinear Control Allocation Using Piecewise Linear Functions
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A novel method is presented for the solution of the control allocation problem where the control variable rates
or moments are nonlinear functions of control position. Historically, control allocation has been performed under
the assumption that a linear relationship exists between the control induced moments and the control effector
displacements. However, aerodynamic databases are discrete valued and almost always stored in multidimensional
lookup tables, where it is assumed that the data are connected by piecewise linear functions. The approach that is
presented utilizes this piecewise linear assumption for the control effector moment data. This assumption allows
the control allocation problem to be cast as a piecewise linear program that can account for nonlinearities in
the moment/effector relationships, as well as to enforce position constraints on the effectors. The piecewise linear
program is then recast as a mixed-integer linear program. It is shown that this formulation accurately solves
the control allocation problem when compared to the aerodynamic model. It is shown that the control effector
commands for a reentry vehicle by the use of the piecewise linear control allocation method are markedly improved
when compared to the performance of more traditional control allocation approaches that use a linear relationship
between the control moments and the effectors. The technique is also applied to determine those flight conditions
(angle of attack and Mach number) at which the reentry vehicle can be trimmed for the purpose of providing
constraint estimates to trajectory reshaping algorithms.

Introduction

T HE utilization of reconfigurable control laws for autonomous
vehicles has resulted in an increased interest in the subject of

control allocation. Reconfigurable control laws require a control al-
location algorithm when the number of control effectors exceeds
the number of controlled variables. Typically, on reusable launch
vehicles, there are only a few controlled variables and some mini-
mal set of effectors to satisfy redundancy requirements. When the
number of effectors exceeds the number of controlled variables, it is
quite common that the desired commands can be achieved in many
different ways. A control allocation algorithm can be used to find a
set of control effector positions that meet some desired objective in
addition to delivering the desired moments. Additionally, the control
effectors are subject to position and/or rate limiting constraints that
can be enforced by a well-designed control allocation algorithm.

In situations where an aircraft has experienced one or more con-
trol effector failures, the control allocator can be used to reconfigure
the remaining effectors to satisfy the control objective. If it is not
physically possible to satisfy a control objective exactly, then control
allocation can be used to minimize the extent to which the objective
is not satisfied. To accomplish this, the control allocator must have
an accurate estimate of the control effector’s moment producing ca-
pabilities. Control allocation has historically been performed under
the assumption that a linear relationship exists between the control
induced moments and the control effector displacements, despite
the fact that the forces and moments produced by aircraft control
surfaces are almost always nonlinear functions of control surface
displacement. This assumption of linearity is usually sufficient for
flight when all control effectors remain operable because most ef-
fectors are approximately linear over some range of deflection in
at least one axis. However, if an effector failure forces the unfailed
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control effectors to operate in a highly nonlinear region of the con-
trol moment curve, the linear approximation may not be sufficiently
accurate for the vehicle to be safely recovered. In this paper, we will
refer to any control allocation approach that assumes the moments
are linear functions of the control effectors as linear control alloca-
tion. If the control moments are assumed to be nonlinear functions of
the effectors, this will be referred to as nonlinear control allocation.
Note that a class of what we refer to as linear control allocation ap-
proaches can accommodate nonlinearities such as rate and position
constraints. Here, we are developing a technique that can enforce
such constraints in addition to making use of known nonlinear re-
lationships between the moments and the effector positions.

Control allocation is vital to the adaptive/reconfigurable flight
control systems that are now being developed for both autonomous
and manned aircraft. These control systems are gaining favor due to
their robustness properties, especially when an aircraft experiences
control effector failures. Several examples of dynamic inversion-
based adaptive/reconfigurable flight control systems can be found
in the literature.1−3 Control allocation algorithms also play an im-
portant part in the online determination of an accurate footprint for
a reusable launch vehicle that has experienced a control effector
failure.4 Buffington5 has demonstrated the application of a dynamic
inversion control law, along with a control allocation algorithm to a
tailless fighter application. Tailless aircraft have reduced directional
stability due to the lack of a vertical tail and rudder for directional
control. Ailerons or spoilers are examples of conventional control
surfaces that can be used to provide directional control; however,
these control effectors lack the control authority of a typical rudder,
requiring that a mix of control effectors be used to generate the ap-
propriate moments. Furthermore, left/right pairs of effectors such
as ailerons and elevators typically have highly nonlinear contribu-
tions to the yawing moment. This is especially true at low angles
of attack where the effects of parasitic drag dominate induced drag.
Nonlinear control allocation is required to make beneficial use of the
nonlinear effects that are often rejected as disturbances by a control
system that uses a linear control allocator.

Comprehensive surveys of existing control allocation techniques
have been presented by Bodson6 as well as Page and Steinberg.7,8

Page and Steinberg7,8 have performed extensive simulation studies
and documented the open- and closed-loop performance of the most
common linear control allocation algorithms. On the other hand,
Bodson6 has compared constrained, numerical-based optimization
methods for control allocation to determine their feasibility for use
in a real-time flight control system.
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Numerous linear control allocation algorithms5,9−11 are currently
available and are well documented in the literature. Buffington’s5

approach was to solve to the control allocation problem using a two
branch approach. The first branch of this control allocation approach
is a check for control deficiency. The control deficiency branch
determines whether the control effectors are capable of producing
a given moment command without violating control effector limits.
Control deficiency is checked by the solution of an optimization
problem that minimizes the �1 norm of the error between the desired
moment and the moments produced by control effectors. The value
of the �1 norm indicates the feasibility of the commanded moment.
If the commanded moment is infeasible, the solution of the control
deficiency branch is the solution to the control allocation problem.
When the commanded moment is determined to be feasible, that
is, the �1 norm is identically zero, then there exists at least one
feasible solution to the problem, and a second optimization problem
is solved. This second branch of the control allocation problem is
the control sufficiency branch, and it is used to provide solution
uniqueness by minimizing the control effector positions with respect
to some preferred position in an �1 norm sense. The optimization
problems in the multibranch approach can be converted into linear
programming problems for the case where the control moments are
linear functions of control effector displacements.

Recently, there have been several papers in the literature that
have discussed relaxing the assumption that the control moments
are linear functions of the control effectors. Recently, Doman and
Oppenheimer12 have implemented a control allocator that uses a
linear approximation of the local slope of the control moment curve
with an added intercept term to account more accurately for the
nonlinear behavior of aerodynamic control effectors. The advan-
tage of this approach is that the control allocation problem can still
be posed as a linear program and solved efficiently with off-the-
shelf software. The end result is that the accuracy is improved over
the more traditional linear programming approaches to control al-
location without adding additional complexity to the simplex algo-
rithm. The downside of this approach is that the control moments
are required to be monotonic functions of the effector displacement.
Otherwise, modeling errors will occur that will result in incorrect
control effector positions.

Doman and Sparks13 devised a method that determines the non-
linear attainable moment set (AMS) for the two-moment case. More
recently, Bolender and Doman14 extended this work to three dimen-
sions for the computation of the nonlinear AMS volume when the
control moments about the third control axis were linear functions
of effector position. At the present time, control allocation methods
that utilize the knowledge that control moments are nonlinear func-
tions of control effector displacement do not lend themselves to be
applied in a real-time control system.

The objective of this paper is to demonstrate that the control allo-
cation problem can be posed in a manner such that the moments that
result from the corresponding control surface deflections are exactly
the moments that are returned from the aerodynamic database. Aero-
dynamic data are typically discrete valued and stored in large, mul-
tidimensional arrays that are functions of flight condition, namely,
angle of attack, sideslip angle, Mach number, and control surface
deflection. For flight control system design and handling qualities
analysis, it is commonplace to assume that the data are connected by
piecewise linear functions. The method that we are proposing like-
wise assumes that the control moments are piecewise linear func-
tions of control surface deflection and flight condition. We will then
pose the control allocation problem as a piecewise linear program.
The piecewise linear program will account for the nonlinearities of
the aerodynamic data, and the solution to this problem will produce
deflections that result in moments that match those found through
linear interpolation of the aerodynamic data. This approach results
in improved command tracking performance when compared to the
linear control allocation approaches just discussed. The accuracy
of the linear and piecewise linear control allocation approaches is
compared when the two methods are interchanged in a dynamic in-
version control law framework for a reentry vehicle with redundant
control effectors. Also, we will show how this method can be applied

to a flight envelope constraint estimation problem whose solution
supports the computation of trajectories under failure conditions.

Dynamic Inversion Flight Control
Dynamic inversion controllers attempt to cancel and replace the

dynamics of the plant being controlled with a set of desired dynam-
ics. If the fidelity of the onboard reference model is high enough,
then the dynamic inversion control law results in a closed-loop sys-
tem that behaves like a decoupled bank of integrators. In the context
of flight control, a common objective of a dynamic inversion control
law is to provide good body-axis angular rate tracking.

It is assumed that a pilot or an outer-loop guidance system gen-
erates body-axis angular velocity commands Pc, Qc, and Rc. The
inner-loop dynamic inversion control law is designed such that the
aircraft tracks these angular velocity commands (Fig. 1). The rota-
tional dynamics for an aircraft can be written as

Iω̇ = GB − ω × Iω (1)

whereω= [P Q R]T , I is the moment-of-inertia tensor, and GB are
the moments acting on the vehicle. We can express GB as a sum that
includes moments that are due to the wing/body aerodynamics and
propulsion system, which we will collectively refer to as the base
moments and moments due to the control effectors:

GB = Gbase(ω, P) + G(P, δ) =




L

M

N




base

+




L(δ)

M(δ)

N (δ)


 (2)

where Gbase(ω, P) is the moment generated by the base engine/
aerodynamic system and G(P, δ) is the sum of the moments pro-
duced by the control effectors. The parameter vector P denotes mea-
surable or estimable quantities that influence the body angular ac-
celerations and includes variables such as Mach number, angle of
attack, sideslip angle, and vehicle mass properties such as moments
of inertia. Thus, we define

f (ω, P)
�= Gbase(ω, P) − ω × Iω (3)

The model used for the design of the dynamic inversion control law
then becomes

Iω̇= f (ω, P) + G(P, δ) (4)

and our objective is to find a control law that provides direct control
over ω̇ such that ω̇= ω̇des, that is,

Iω̇des = f (ω, P) + G(P, δ) (5)

therefore, the inverse control must satisfy

Iω̇des − f (ω, P) = G(P, δ) (6)

Because there are more control effectors than controlled variables,
a control allocation algorithm must be used to obtain a solution. So-
lution of this control allocation problem will be discussed in detail in
a later section. Equation (6) states that the control effectors are to be
used to correct for the difference between the desired accelerations
and the accelerations due only to the base moments.

Fig. 1 Block diagram of inner-loop dynamic inversion control law.
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Piecewise Linear Programming
Piecewise linear programming is an optimization method that

allows one to approximate nonlinear programming problems that
comprise separable functions. To solve the resulting approximation
problem, a linear program can be formulated and then solved by the
use of a modified simplex method.15 A second option is to formulate
the nonlinear program as a mixed-integer linear program.16

In terms of control allocation, the restriction of the approximation
of separable functions by piecewise linear functions may appear to
be overly restrictive. For most aircraft, the control-induced moments
can be considered as separable because, in many cases, there are no
significant aerodynamic interactions among the control effectors.
In some instances, the cross-coupling of control effectors cannot be
neglected, such as when control effectors are located downstream
of other surfaces.

For purposes of illustration, we will approximate a single-valued
function f (x) by its piecewise linear approximation and show how
to formulate the minimization of f (x), x ∈ [a, b] as a piecewise
linear program. The approach given hereafter for a single variable
function can be generalized for multivariable, separable functions
rather easily. Furthermore, we are not restricted to approximating
only the objective function by a piecewise linear approximation be-
cause it is also possible to consider piecewise linear approximations
of the constraints, if they are separable, within the same framework.
A detailed discussion can be found in Ref. 15.

Without loss of generality, we begin by considering a func-
tion f (x) of a single variable, defined on an interval [a, b]. Be-
gin by the definition of a grid of K points spaced on the in-
terval [a, b] and denote these points as x (k), k = 1, . . . , K where
a = x (1) < x (2) < · · · < x (k) < · · · < x (K ) = b. Note that we are not
restricted to a uniform spacing of the x (k). Furthermore, let f (k)

denote the value of f (x (k)). A piecewise linear approximation of
f (x) can then be constructed by the connection of (x (k), f (k)) and
(x (k + 1), f (k + 1)) with a straight line, as shown in Fig. 2. The equation
of the line connecting the points (x (k), f (k)) and (x (k + 1), f (k + 1)) is
given by

f̃ (x) = f (k) + f (k + 1) − f (k)

x (k + 1) − x (k)

(
x − x (k)

)
(7)

where x ∈ [x (k), x (k + 1)]. There will be K − 1 such equations, one
for each subinterval. Observe that on a given subinterval, x can be
written as

x = λ(k)x (k) + λ(k + 1)x (k + 1) (8)

where λ(k) ≥ 0 and λ(k + 1) ≥ 0. The λ(k) are normalized such that

λ(k) + λ(k + 1) = 1 (9)

It can then be shown that Eq. (7) can be written as

f̃ (x) = λ(k) f (k) + λ(k + 1) f (k + 1) (10)

Fig. 2 Piecewise linear function approximation.

Therefore, in the interval [x (1), x (K )], each x and the approximate
value f̃ (x) can be determined by assignment of the appropriate val-
ues to λ(k) and λ(k + 1) that correspond to the subinterval in which x
lies. Because x can only be defined on a single subinterval, all of
the λ(k) that are not associated with that particular interval must
all be equal to zero. As a result, we can express Eqs. (8) and
(10) as

x =
K∑

k = 1

λ(k)x (k) (11)

f̃ (x) =
K∑

k = 1

λ(k) f (k) (12)

subject to the following conditions:

K∑
k = 1

λ(k) = 1 (13)

λ(k) ≥ 0, k = 1, . . . , K (14)

λ(i)λ( j) = 0 if j > i + 1, i = 1, . . . , K − 1 (15)

Equation (15) is necessary to ensure that only points lying on piece-
wise linear segments that connect adjacent breakpoints are consid-
ered part of the approximating function. For example, given a value
of x , no more than two of the λ(k) are allowed to be positive, and the
two λ(k) also must be adjacent. If we consider a value of x where λ(3)

and λ(4) are positive, with λ(1) = λ(2) = 0 and λ(k) = 0, k = 5, . . . , K ,
then the value of f̃ (x) lies on the approximating function between
x (3) and x (4). On the other hand, if λ(4) > 0 was to be replaced by
λ(6) > 0, and all other λ(k) = 0, then the line connecting x (3) and x (6)

would not be part of the approximating function. Furthermore, if we
chose a value of x such that x = x (k) and f̃ (x) = f (x), then, from
Eq. (13), λ(k) = 1 and all other values of λ = 0. Last, note that one can
always obtain a more accurate approximation of f (x) by increasing
the number of gridpoints; however, this obviously increases the size
of problem.

Given that we now have a piecewise linear approximation to f (x)
and the additional constraints that result from the transformation,
we are able to state the piecewise linear program that corresponds
to the minimization of f (x) on the interval a ≤ x ≤ b:

min f̃ (x) =
K∑

k = 1

λ(k) f (k) (16)

subject to

K∑
k = 1

λ(k) = 1 (17)

λ(k) ≥ 0 (18)

Once the solution to the piecewise linear program is obtained, one
uses Eq. (11) to find the corresponding value of x that gives an
approximate minimum to f (x). Finding a solution to a piecewise
linear program requires an approach that ensures that Eq. (15) is
satisfied.

Recall that Eq. (15) requires that no more than two adjacent λ(k)

are allowed to be nonzero. Therefore, to find an optimal feasible so-
lution to the piecewise linear program, one of two approaches must
be taken. One approach is to solve the problem with the simplex
method with a restricted basis entry rule.15 A second approach is to
formulate Eq. (15) with binary decision variables16 that will con-
strain x to be on only one subinterval. The result will be yet another
increase in the size of the problem beyond what was necessary for
the piecewise linear approximation. The addition of the binary vari-
ables transforms the piecewise linear programming problem into a
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mixed-integer linear program (MILP). We will take the latter ap-
proach because it is sufficient for demonstrating the validity of the
approach and also because of the availability of an open-source
code (GNU Linear Programming Kit) that solves linear programs
and mixed-integer linear programs.

Transformation of the Piecewise Linear Program to a MILP
Begin by considering the piecewise linear approximation shown

in Fig. 2. Note that if there are K breakpoints, then there are K − 1
linear segments. We assign a variable y(k) that corresponds to the
kth linear segment of the piecewise linear approximation such that

y(k) =
{

1 if λ(k) �= 0 and λ(k + 1) �= 0

0 otherwise (19)

for k = 1, . . . , K − 1. Next, we make the observation that if λ(1) �= 0
and λ(2) �= 0, then

λ(1) ≤ y(1) (20)

λ(2) ≤ y(1) (21)

where y(1) = 1. However, if we are on the segment where λ(2) �= 0
and λ(3) �= 0, such that y(2) = 1, then

λ(2) ≤ y(2) (22)

λ(3) ≤ y(2) (23)

If we proceed in this manner, we observe that the following re-
strictions can be placed on the λ(k)

λ(1) ≤ y(1) (24)

λ(k) ≤ y(k − 1) + y(k), k = 2, . . . , K − 1 (25)

λ(K ) ≤ y(K − 1) (26)

The rationale behind Eq. (25) is as follows: The λ(k) that correspond
to points that are interior to the interval, that is, they are not the
endpoints of the interval on which x is defined, can be associated
with one of two line segments. A particular λ(k) is the endpoint for
the line segment immediately preceding it, in addition to the line
segment that comes immediately after it. Only one of these two line
segments may be active at any time; therefore, the right-hand side
of Eq. (25) is never greater than one. In addition to Eqs. (24–26), we
have an additional constraint to ensure that only one of the K − 1
line segments is active; hence, only one of the y(k) can be equal to
one:

K − 1∑
k = 1

y(k) = 1 (27)

By including Eqs. (24–27) into the piecewise linear program, we
transform it into a MILP. The transformed optimization problem is
stated as follows:

min f̃ (x) =
K∑

k = 1

λ(k) f (k) (28)

subject to

K∑
k = 1

λ(k) = 1 (29)

λ(k) ≥ 0 (30)

λ(1) ≤ y(1) (31)

λ(k) ≤ y(k − 1) + y(k), k = 2, . . . , K − 1 (32)

λ(K ) ≤ y(K − 1) (33)

K−1∑
k = 1

y(k) = 1 (34)

y(k) ∈ {0, 1} (35)

By including the additional constraints that are necessary to com-
plete the transformation of the piecewise linear program, we have
added an additional K − 1 decision variables to the problem. This
does not include any slack or surplus variables that may be required
by the solver. The slack and surplus variables will further increase
the number of decision variables. The solution to the MILP is ob-
tained with a branch-and-bound algorithm. Technical details on the
branch-and-bound algorithm can be found in Ref. 16.

Formulation of Control Allocation Problems as MILP
For typical aircraft, there are three controlled variables (moments)

and three control surfaces, resulting in a square system of equations
that form a unique mapping of the control moments to the con-
trol surfaces. On the other hand, aircraft such as the X-33, X-40A,
F/A-18 HARV, F-15 ACTIVE, and AFTI/F-16 have more control
surfaces than controlled variables. The resulting underdetermined
system requires that a control allocation algorithm be used to en-
sure that Eq. (6) is satisfied. There are often an infinite number of
solutions for given values of the controlled variables; therefore, con-
trol allocation is often cast as an optimization problem to obtain a
solution with some desired properties. Such objectives commonly
include the minimization of control effector displacement or the
minimization of the control moment error. The control allocation
formulation that is used in this paper follows the multibranch ap-
proach, similar to that posed by Buffington5; however, the assump-
tion that the control induced moments are linear functions of the
control displacements has been removed.

In this section, the control allocation problems are formulated
as piecewise linear programs. Recall that piecewise linear program-
ming is a method for approximating a nonlinear programming prob-
lem that comprises separable functions. The resulting piecewise
linear program approach minimizes a performance index that in-
cludes the linear terms of the original nonlinear program and/or the
piecewise linear approximation of any nonlinear functions subject to
linear and piecewise linear constraints. We will begin with a discus-
sion of the linear control allocation problem and the equivalent linear
programming problem. We will then formulate the piecewise linear
programs for the control deficiency and control sufficiency branches.
The piecewise linear programs are then subsequently transformed
and solved as MILP by the use of a branch-and-bound algorithm.
The resulting mixed-integer program is much more complex and
difficult to solve than a linear program. The difference is that we are
now able to achieve more accurately the moments that we desire for
any given feasible moment command.

Control Deficiency Branch
For this discussion, let us begin by examining the case where the

moments are approximated as linear functions of control positions
subject to instantaneous position constraints. The control deficiency
branch is used to test whether there exists a set of control effector
positions that will satisfy Eq. (6). For convenience, we will refer to
the left-hand side of Eq. (6) as ddes:

ddes
�= Iω̇des − f (ω, P) = Gδ(P)δ

�= Bδ (36)

where Gδ(P)δ ≈ G(P, δ). Then Gδ(P) is a 3 × m matrix where
Gδi j = Bi j = ∂Gi/∂δ j . If it is not feasible to obtain ddes = Bδ due to
control effector constraints, then the difference between the desired
and actual effector-induced body-axis accelerations is minimized.
The control deficiency branch is stated in terms of the minimization
of a weighted one-norm performance index:

min
δ

JD =
∥∥wT

a (Bδ − ddes)
∥∥

1
(37)
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subject to

δ ≤ δ ≤ δ̄ (38)

The column vector wa has positive elements and is used to prioritize
the axes. The bounds on the control effectors are defined to be δ and
δ̄, where

δ̄= min(δu, �T δ̇max + δ), δ= max(δl , −�T δ̇max + δ)

(39)

where δu is the upper position limit vector, δl is the lower position
limit vector, δ̇max is a vector of the effector rate limits, and �T is
the inner-loop flight control system update rate. The optimization
problem posed in Eq. (38) may be transformed into the following
linear programming problem5:

min
δs

JD = [
0 · · · 0 wT

a

] [
δ

δs

]
(40)

subject to




δs

−δ

δ

−Bδ+ δs

Bδ+ δs




≥




0

−δ̄

δ

−ddes

ddes




(41)

where δs has the same dimension as the set of controlled variables.
If JD = 0, then the commanded controlled variable rates are achiev-
able, and excess control power may be available to optimize subob-
jectives. If JD �= 0, the commanded controlled variable rates are not
achievable, and the control allocation algorithm provides a vector
of effector commands that minimize the deficiency.

Control Deficiency Branch as a MILP
To transform the �1 optimization of the control deficiency branch

to a piecewise linear program, we will focus on the transformed
linear program as defined in Eqs. (40) and (41). The transformation
of the control allocation problem to the piecewise linear program
will involve the control effectors δi , i = 1, . . . , m, and the terms
containing Bδ. We want to replace Bδ, where an element in the i th
row of B is a linear approximation of the control moment produced
by δi , by a piecewise linear approximation of the control moments
as a function of control effector position.

Let Li (δi ), Mi (δi ), and Ni (δi ) denote the rolling, pitching, and
yawing moments produced by deflection of the i th control surface
δi . The piecewise linear approximation of Li (δi ) can be written as

Li (δi ) =
Ki∑

k = 1

L (k)

i λ
(k)

i (42)

= [
L (1)

i L (2)

i . . . L (Ki )

i

]




λ
(1)

i

λ
(2)

i
...

λ
(Ki )

i




(43)

where Ki is the number of breakpoints chosen to approximate the
rolling moment due to δi , and the λ

(k)

i are the normalized coefficients
introduced earlier. The piecewise linear approximations for Mi (δi )
and Ni (δi ) follow accordingly. Furthermore, we have the following
expression for δi given λ

(k)

i :

δi =
Ki∑

k = 1

λ
(k)

i δ
(k)

i (44)

We are now able to rewrite the B matrix as

B̃ =




L (1)

1 L (2)

1 . . . L (k)

i . . . L (Km )
m

M (1)

1 M (2)

1 . . . M (k)

i . . . M (Km )
m

N (1)

1 N (2)

1 . . . N (k)

i . . . N (Km )
m


 (45)

We also define a vector Λ as

Λ=




λ
(1)

1

λ
(2)

1
...

λ
(k)

i
...

λ(Km )
m




(46)

such that Bδ is replaced by B̃Λ. The vector Λ is of length

m∑
i = 1

Ki

and B̃ is a matrix of size

3 ×
m∑

i = 1

Ki

Note that if there are additional controlled variables, each one will
add a row to B̃. In formulating the piecewise linear control allocation
problem, we no longer consider the case where the actuator rate
limits and the sample rate of the flight control system set the upper
and lower position limits on the control effectors. This is because we
have made the assumption that the control moments are functions of
control deflection only; therefore, we make no provision within the
piecewise linear formulation of the problem for including actuator
rates. If so desired, one could impose constraints on the λ

(k)

i that limit
how much it can change in one time step, thereby imposing a rate
limit. In addition, the upper and lower position limits (δmax and δmin)
for each effector are now accounted for in the a priori selection of
each control effector’s breakpoints and are, therefore, automatically
included in the problem formulation. Because we have replaced an
explicit dependence on δi with an implicit one, λ(k)

i , we only need to
impose the following bounds: λ(k)

i ≥ 0, k = 1, . . . , Ki , i = 1, . . . , m.
Recall that we do not need to define the upper bounds on the λ

(k)

i
explicitly because we have the constraint that

Ki∑
k = 1

λ
(k)

i = 1, i = 1, . . . , m

and the constraints associated with the binary decision variables
y(k)

i that will restrict λ
(k)

i ≤ 1. Once we obtain an optimal solution to
the problem, we compute each δi using Eq. (44). There are also an
additional m constraints of the form

Ki∑
k = 1

λ
(k)

i = 1, i = 1, . . . , m (47)

Transformation to the MILP form requires additional constraints
involving the binary variables y(k)

i . These constraints are necessary
to enforce the adjacency constraint given by Eq. (15).

λ
(1)

i ≤ y(1)

i , i = 1, . . . , m (48)

λ
(k)

i ≤ y(k − 1)

i + y(k)

i , i = 1, . . . , m, k = 2, . . . , Ki − 1

(49)
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λ
Ki
i ≤ y(Ki − 1)

i , i = 1, . . . , m (50)

Ki − 1∑
k = 1

y(Ki −1)

i = 1, i = 1, . . . , m (51)

y(k)

i ∈ {0, 1} (52)

The control deficiency branch in the form of a MILP is

min
δs

JD = [
0 · · · 0 0 · · · 0 wT

a

]



Λ- - - -
y

- - - -
δs


 (53)

subject to

δs ≥ 0 (54)

B̃Λ+ δs ≥ ddes (55)

−B̃Λ+ δs ≥ −ddes (56)

λ
(k)

i ≥ 0, i = 1, . . . , m, k = 2, . . . , Ki (57)

Ki∑
k = 1

λ
(k)

i = 1, i = 1, . . . , m (58)

λ
(1)

i ≤ y(1)

i , i = 1, . . . , m (59)

λ
(k)

i ≤ y(k − 1)

i + y(k)

i , i = 1, . . . , m, k = 2, . . . , Ki − 1 (60)

λ
Ki
i ≤ y(Ki − 1)

i , i = 1, . . . , m (61)

Ki − 1∑
k = 1

y(Ki − 1)

i = 1, i = 1, . . . , m (62)

y(k)

i ∈ {0, 1} (63)

Note that the vector y is of length

−m +
m∑

i = 1

Ki

and is defined in the same manner as Λ:

y = [
y(1)

1 . . . y(K1)

1 . . . y(k)

i . . . y(Km )
m

]T
(64)

Control Sufficiency Branch
If there is sufficient control power available such that JD = 0,

then there may be excess control power available to optimize a
subobjective. The subobjective could involve driving the control
effectors to a preferred position δ p . An optimization problem that
reflects this objective is given by

min
δs

JS =
∥∥wT

δ (δ − δ p)
∥∥

1
(65)

subject to

Bδ= ddes (66)

δ ≤ δ ≤ δ̄ (67)

where wT
δ is a column vector that allows one to weight one effector

over another. This optimization problem can be cast into the linear
programming (LP) framework, as follows:

min
δs

JS = wT
δ δs (68)

subject to




δs

−δ

δ

−δ+ δs

δ+ δs




≥




0

−δ̄

δ

−δ p

δ p




(69)

Bδ= ddes (70)

where δs , δ p , and wδ are of the same dimension as the number
of control effectors. The preference vector δ p is used to drive the
effectors to some desired position.

Control Sufficiency Branch as a MILP
The differences between the MILP formulation of the control

deficiency branch and MILP formulation of the control sufficiency
branch are relatively minor. The primary difference is that the control
sufficiency branch is a slightly larger problem because the objective
function is being optimized with respect to the control effectors
rather than the moments. This results in additional constraints due
to the presence of two inequality constraints of the form δ+ δs ≥ δ p

in the linear program. The number of binary variables y(k)

i and the
parameters λ

(k)

i are the same as for the control deficiency branch.
The control sufficiency branch can be stated as the following

MILP:

min
δs

JS = [
0 · · · 0 0 · · · 0 wT

δ

]



Λ- - - -
y

- - - -
δs


 (71)

subject to

δs ≥ 0 (72)

Ki∑
k = 1

λ
(k)

i δ
(k)

i + δs,i ≥ δp,i , i = 1, . . . , m (73)

−
Ki∑

k = 1

λ
(k)

i δ
(k)

i + δs,i ≥ −δp,i , i = 1, . . . , m (74)

B̃Λ= ddes (75)

λ
(k)

i ≥ 0, i = 1, . . . , m, k = 2, . . . , Ki (76)

Ki∑
k = 1

λ
(k)

i = 1, i = 1, . . . , m (77)

λ
(1)

i ≤ y(1)

i , i = 1, . . . , m (78)

λ
(k)

i ≤ y(k − 1)

i + y(k)

i , i = 1, . . . , m, k = 2, . . . , Ki − 1

(79)

λ
Ki
i ≤ y(Ki − 1)

i , i = 1, . . . , m (80)

Ki − 1∑
k = 1

y(Ki − 1)

i = 1, i = 1, . . . , m (81)

y(k)

i ∈ {0, 1} (82)

Uniqueness of Solutions to the Nonlinear Control Allocation Problem
In the preceding discussion, the nonlinear control allocation prob-

lem was posed as a two-branch optimization problem where each
optimization problem can be considered as an approximation to
a nonlinear programming problem. Because we are now solving
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approximate nonlinear programming problems, we must address
the issue of the uniqueness of the solutions to the control allocation
problem. In the nonlinear control allocation problem, the control
moments are often nonmonotonic functions of the control effec-
tors; therefore, the solution to an instance of the control allocation
problem is not guaranteed to be unique.

Although uniqueness is an issue in both the control deficiency and
control sufficiency branches, we will concentrate on the uniqueness
of the control sufficiency branch. Recall that when the control defi-
ciency branch indicates a feasible solution to the control allocation
problem exists, we solve a second optimization problem to minimize
the control deflections relative to some preferred position. Now that
we are solving an optimization problem that uses piecewise linear
functions, the uniqueness of the sufficiency branch is dependent on
the selection of the preference vector δ p . Hereafter, we give condi-
tions for which a finite number of unique solutions to the unweighted
control sufficiency branch exist. We then give a method for testing
the uniqueness of a given solution to G(P, δ) = ddes when G(P, δ)
is piecewise linear.

Conjecture: A finite number of solutions to the problem

min Js = ‖δ − δ p‖1 (83)

subject to

G(P, δ) = ddes (84)

δmin ≤ δ ≤ δ (85)

where G(P, δ) is piecewise linear, exist if the following condition
is satisfied:

Condition: No facet of the hypersurface defined by the rows of
G(P, δ) = ddes has a gradient equal to α[±1 ± 1 . . . ± 1] ∀ α ∈ R.

Geometrically, a row of G(P, δ) = ddes defines a faceted hypersur-
face. If any facet of G(P, δ) = ddes is coincident with a hyperplane
on the boundary of a hypercube that is centered at δ p , and whose

Fig. 3 Example δp, for which there exist two solutions to the sufficiency branch.

vertices lie one-line segments parallel to the coordinate axes in R
n ,

then an infinite number of solutions can exist. This is because any
solution on this facet will have be the same distance from δ p in a
one-norm sense.

Remark 1: If the condition is not satisfied, then a finite number
of solutions will exist if δ p lies outside of any hypercube whose
bisecting diagonal hyperplane is coincident with any of the hyper-
planes defined by any row of G(P, δ) = ddes whose gradient is equal
to α[±1 ± 1 . . . ± 1].

Remark 2: If the condition is satisfied, then no more than 2n

solutions exist, where n is the dimension of the control space, that
is, δ ∈ R

n . All candidate solutions lie on the vertices of a hyper-
cube with sides of length Js

√
n where Js = ‖δ∗ − δ p‖1 and δ∗ =

arg min ‖δ − δ p‖1 subject to G(P, δ) = ddes.
Uniqueness Test: If the condition is satisfied, then the uniqueness

of any solution to the control sufficiency branch can be tested in the
following manner: Given a solution δ∗ that minimizes ‖δ − δ p‖1

subject to G(P, δ) = ddes, and a preference vector δ p , let Js = ‖δ∗ −
δ p‖1. If G(P, δ) = ddes at any of the 2n vertices of the hypercube
centered at δ p with sides of length Js

√
n, then the solution is not

unique. The vertices of the hypercube are given by δ= δ p ± Jsei ,
where eT

i = [0 . . . 0 1 0 . . . 0] defines a unit vector parallel to the
i th coordinate axis.

We show in Fig. 3 a set of pitching moment contours for a reen-
try vehicle. This set of contours is the result of the deflection of
two control effectors, and of consideration of all possible combi-
nations of (δ1, δ2). Note that, for this particular δ p , there are two
solutions to the sufficiency branch. Given one solution to the con-
trol allocation problem that minimizes ‖δ− δ p‖1 for ddes = 0.01,
one can check each vertex of the square centered on δ p and dis-
cover that there is a second solution to the optimization problem.
If any of the line segments that describe the contours of constant
moment have a slope of ±1 and are coincident with any side of
any square with a center at δ p , then the uniqueness test would, at
most, find two solutions, despite that an infinite number of solutions
exist along the line segment. Note from Fig. 3 that there may be
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multiple preference vectors for which there are multiple solutions
for a desired value of the control moment. Therefore, it is important
that the uniqueness test be used in conjunction with the condition
when testing for uniqueness. Uniqueness can be ensured by proper
selection of δ p and/or the use of a weighted one-norm objective
function where the weights are selected to enforce uniqueness. Al-
though the foregoing remarks pertain specifically to the unweighted
one-norm case, similar arguments can be developed for the weighted
case.

Applications
There are two important applications for control allocation al-

gorithms that take into account the nonlinear relationship between
the control effectors and the control moments. Motivation for the
use of nonlinear control allocation in the context of adaptive/
reconfigurable control systems was outlined in an earlier section.
In this section, we will compare the performance of the piecewise
linear control allocation approach to a linear allocation method in a
simulation of a reentry vehicle that uses a dynamic inversion control
law for inner-loop control. A second application of nonlinear control
allocation is the determination of constraints for use with trajectory
reshaping algorithms.17 Here, it is necessary to be able to determine
accurately the range of angles of attack over which the vehicle can
be trimmed in the presence of control effector failures. An addi-
tional benefit of solution of the constraint estimation problem is that
trim lift and drag effects can be included in the trajectory reshaping
problem with little additional computational burden. Both of these
subproblems require that a control allocation problem be solved.

Simulation of Dynamic Inversion Control Law
The MILPs for the multibranch control allocation discussed ear-

lier were implemented in a Simulink® simulation of a reentry ve-
hicle. This particular vehicle has six control surfaces: left and right
rudders, left and right flaperons, a body flap, and a speed brake. The
simulation models the descent, final approach, and touchdown of
the vehicle.

The performance of the piecewise linear approach is compared to
that of a linear control allocation method. The linear control allocator
assumes that the moments are linear functions of the effectors. The
slope of the control moment curve is calculated with respect to the
current control effector position by the use of a forward difference
approximation. An intercept correction12 term is then applied to
account for mild nonlinearities in the aerodynamic data.

The results that follow give the closed-loop vehicle performance
when there are two failures injected into the flight control system at
different times during the approach and landing phases. It is assumed
that there is some type of fault detection capability on-board the air-
craft to identify the failures. The failure information is immediately
passed to the control allocation algorithm to facilitate reconfigura-
tion of the vehicle’s effectors. The aircraft’s trajectory begins at an
altitude of about 15,000 ft above the runway and 4 miles down-
range from the runway threshold. The first failure occurs 30 s into
the simulation and involves the body flap being locked at −5 deg.
This failure contributes a constant pitching moment to the aircraft.
A second failure, where the right rudder becomes locked at 1 deg,
occurs at 40 s. This particular failure adds not only a pitching mo-
ment to the aircraft, but also rolling and yawing moments. This
particular failure combination was chosen because it requires the
flaperons to operate in a highly nonlinear region of the control mo-
ment curve. After the failures are introduced, the aircraft tries to
follow the nominal approach trajectory to the runway threshold.
The aircraft extends the landing gear at about 68 s and flares imme-
diately before touchdown. The simulation ends at touchdown when
the weight-on-wheels switch is triggered.

For the control sufficiency branch of the control allocator, a pre-
ferred control position δ p is required. There are several different
objectives that may be used to determine δ p . These include, but are
not limited to, minimum control deflection (δ p = 0), minimum two-
norm deflection, and null-space injection.5,18 The preference vector
used in this simulation is the minimum two-norm of the control
surface deflection. This particular δ p minimizes δT Wδ subject to

Bδ= ddes, where W is a positive definite weighting matrix. For our
results, we take the weighting matrix W as the identity matrix. The
corresponding solution to this problem is then δ p = BT (BBT )−1ddes.
Note that this particular preference vector has the advantage of fa-
cilitating robustness analysis with the control allocator in the loop
because the control allocator can be represented in closed-form for
local linear analysis. For the piecewise linear control allocation, we
found that it was sufficient to compute the right pseudo-inverse solu-
tion δ p with a B matrix that uses local slopes of the control moments
at the last control surface position.

We will measure the performance of the two control allocators by
their ability to produce deflections that, when applied to the nonlin-
ear aerodynamic database, produce the desired moments about each
axis. This metric is an indication of the error that results from the
selection of a particular model in the control allocation algorithm.

Simulation Results
The results for the piecewise linear control allocator as com-

pared to a linear control allocator with intercept correction are
given in Figs. 4 and 5. Figure 4 shows the base 10 logarithm of
‖ddes − G(P, δ)‖2, where G(P, δ) is the moment that is applied to
the vehicle when given the control deflections returned by the control
allocator. It is evident that the piecewise linear control allocator re-
turns control surface deflections that produce the desired moments.
On the other hand, the linear control allocator has a significant error.
Note that at the 40-s mark, when the second failure is introduced,
both control allocators indicate that there is a moment deficiency
due to control effector saturation. Beyond 60 s, the performance of
the piecewise linear control allocator improves once the effectors
are no longer saturated. The poor performance of the linear con-
trol allocator is primarily due to the modeling errors inherent in
the linear approximation of the control moment curves. The control
surface commands from each control allocator are shown in Fig. 5.
We see that, after the second failure is injected into the simulation,
the flaperon deflections saturate at their upper limit. Note that the
flap and speedbrake commands for the piecewise linear allocator
oscillate after about 65 s. This appears to be due to an oscillatory
ddes and δ p that result from body-axis rate loop closures. For the
linear control allocator, we see that the flaps, left rudder, and speed-
brake exhibit large amplitude oscillations. Note that for this failure
case, the vehicle that flew with the piecewise linear control allocator
maintained controlled flight.

Note that both the linear and nonlinear control allocation ap-
proaches were solved with GNU Linear Programming Kit’s linear
programming simplex library for the former and the branch-and-
bound solver for the latter. The simulation with the nonlinear control
allocator and the branch-and-bound solver ran extremely slow when
compared to the simulation with the linear program solver used for
the linear control allocator. It was observed that it took approxi-
mately 8.5 times longer on average to find a solution to the MILP
control allocation problem as compared to the LP approach. This
computational burden may limit one’s ability to utilize the MILP ap-
proach in a real-time, digital flight control system in the near future.
Performance gains may be achieved by the solution of the piecewise
linear control allocation problem via the simplex method with the
restricted basis entry rules.15

Application to Trajectory Reshaping
The intent here is to show a brief, although important, application

of nonlinear control allocation. One of the areas of active research
regarding reusable launch vehicles is the online determination of
new feasible trajectories following a control effector failure. It is
desired to guide the aircraft safely from the time that the failure
occurs to a safe abort and to recover the vehicle if possible. An im-
portant part of the determination of feasible trajectories is having
accurate estimates of the ranges of angle of attack, for a given Mach
number, at which the aircraft can be trimmed. Also, it is important to
be able to estimate critical parameters, such as the maximum lift-to-
drag ratio, that will impact the optimal trajectory.17 It is not desirable
to use a linear control allocation approach to determine whether the
vehicle can be trimmed. The reason is that a linear control allocator
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Fig. 4 Difference between desired and applied moments.

Fig. 5 Control effector time history.

would require a linear least-squares approximation of the nonlinear
control moments, thereby introducing significant modeling errors.
These modeling errors would then result in an inaccurate determi-
nation of the range of trimmable angles of attack. On the other hand,
the use of a nonlinear control allocation algorithm allows one to es-
timate more accurately the trimmable angles of attack, as well as the
critical parameters. Shown in Fig. 6 is an example of the moment
deficiency for the same vehicle used in the aforementioned simula-

tion when the right rudder is failed. The moment deficiency in this
case is measured by the value of ‖G(P, δ) − ddes‖2, where G(P, δ)
is the piecewise linear representation of the vehicle aerodynamics
and ddes are the base aerodynamic moments at each flight condition.
A nonzero value of ‖G(δ)− ddes‖2 indicates that the vehicle cannot
be trimmed at that particular Mach number and angle of attack. It
is easily seen that a significant portion of the flight envelope is no
longer flyable due to this effector failure. Figure 6 indicates that as
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Fig. 6 Moment deficiency for a single effector failure.

the aircraft slows during approach and landing that the vehicle is
unable to trim to angles of attack above 5 deg. Note that at Mach 0.5,
the aircraft can be trimmed if the angle of attack is less than 7 deg or
higher than 12.5 deg. Above Mach 0.55, the vehicle can be trimmed
at any angle of attack for this particular failure.

Conclusions
A novel method was presented for the solution of a class of con-

trol allocation problems. Control allocation has historically been
performed under the assumption that a linear relationship exists
between the control induced moments and the control effector dis-
placements. Because aerodynamic data almost always exhibit non-
linear behavior, such assumptions can lead to degraded performance
or vehicle loss when secondary nonlinear effects must be used to
control a vehicle, particularly after control effector failures have oc-
curred. Aerodynamic databases are usually discrete valued and are
almost always stored in multidimensional lookup tables where it is
assumed that the data are connected by piecewise linear functions.

The approach that was presented assumes that the control effec-
tor moment data are piecewise linear. This assumption allows us
to cast the control allocation problem as a piecewise linear pro-
gram. To solve the piecewise linear program, it was reformulated as
a mixed-integer linear program and solved with a readily available
branch-and-bound algorithm. Simulation showed that the piecewise
LP formulation results in improved tracking performance of the de-
sired moments when compared to a more traditional control alloca-
tion approach that uses the linear assumption, especially when the
aircraft is forced to operate with its control effectors in nonlinear
portions of the control moment curves as a result of control effector
failures. The piecewise linear control allocator was able to maintain
control of the aircraft and land after the failures were introduced,
whereas a control allocation algorithm that utilized a simple linear
relationship along with an intercept correction term did not. The
piecewise linear control allocator was applied to the determination
of regions of trimmable angle of attack and Mach number for the
purposes of trajectory reshaping under failure conditions. Note that
linear control allocation is not suitable for this purpose.
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